1. M.C. Daniel, D. Astruc Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology Chem Rev, 104 (2004), pp. 293-346.
2. Rita Mendes, Pedro Pedrosa, João C. Lima, Alexandra R. Fernandes, Pedro V. Baptista Photo thermal enhancement of chemotherapy in breast cancer by visible irradiation of gold nanoparticles Sci Rep, 7 (2017), p. 10872, 10.1038/s41598-017-11491-8 Article number: 10872.
3. Huang Xiaohua, Prashant K. Jain, Ivan H. El-Sayed, Mostafa A. El-Sayed Plasmonic photothermal therapy (PPTT) using gold nanoparticles Lasers Med Sci, 23 (2008), p. 217, 10.1007/s10103-007-0470-x.
4. Zahra Heidari, Mojtaba Salouti, Reyhaneh Sariri Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide Nanotechnology, 26 (19) (2016), 10.1088/0957-4484/26/19/195101.
5. Zdenka Kuncic, Sandrine Lacombe Nanoparticle radio-enhancement: principles, progress and application to cancer treatment Phys Med Biol, 63 (2018), p. 02TR01 27pp, https://orcid.org/0000-0001-6765-3215
6. So-Ra Kim, Eun-Hee Kim Feasibility study on the use of gold nanoparticles in fractionated kilovoltage X-ray treatment of melanoma Int J Radiat Biol, 94 (1) (2017), pp. 8-16, 10.1080/09553002.2018.1393579.
7. Omid Mahian, Ali Kianifar, Saeed Zeinali Heris, Somchai Wongwises Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study Int J Heat Mass Transf, 99 (2016), pp. 792-804, 10.1016/j.ijheatmasstransfer.2016.03.045.
8. S. Jain, D.G. Hirst, J.M. O'Sullivan Gold nanoparticles as novel agents for cancer therapy British J. Radiol., 85 (1010) (2012), pp. 101-113.
9. Network, C. G. A. Comprehensive molecular portraits of human breast tumours. Nature 490, 61 (2012).
10. Kasinski, A. L. & Slack, F. J. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11, 849 (2011).
11. Nayak, M. G. et al. Quality of life among cancer patients. Indian J. Palliat. Care 23, 445 (2017).
12. Curtis, C. et al. Te genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486, 346 (2012).
13. van Schooneveld, E. et al. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 17, 21 (2015).
14. [14] - Blenkiron, C. et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8, R214 (2007).
15. Bartel, D. P. MicroRNAs: Target recognition and regulatory functions. Cell 136, 215–233 (2009).
16. Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).
17. 17Naidu, S., Magee, P. & Garofalo, M. MiRNA-based therapeutic intervention of cancer. J. Hematol. Oncol. 8, 68 (2015).
18. Zhou, J. et al. miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem. Biophys. Res. Commun. 433, 207–212 (2013).
19. Zhou, J. et al. miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem. Biophys. Res. Commun. 433, 207–212 (2013).
20. Omid Mahian, Ali Kianifar, Saeed Zeinali Heris, Somchai Wongwises Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study Int J Heat Mass Transf, 99 (2016), pp. 792-804, 10.1016/j.ijheatmasstransfer.2016.03.045.
21. Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA .Synthesis and Characterization of Biodegradable Thiolated Chitosan Nanoparticles as Targeted Drug Delivery System. J Nanomedic Nanotechnol. 2011; S4:001.
22. Gholipourmalekabadi M, Mobaraki M, Ghaffari M, Zarebkohan A, Omrani VF, Urbanska AM, Seifalian A. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Curr Pharm Des. 2017;23(20):2918-2929. doi: 10.2174/1381612823666170419105413. PMID: 28425863.
23. Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5, 209ra152 (2013).